Rupture of thin liquid films: generalization of weakly nonlinear theory.

نویسندگان

  • B Y Rubinstein
  • A M Leshansky
چکیده

In this paper, we investigate the rupture dynamics of thin liquid films driven by intermolecular forces via weakly nonlinear bifurcation analysis. The dynamic equations governing slow dynamics of the perturbation amplitude of the near-critical mode corresponding to several models describing the evolution of thin liquid films in different physical situations appear to have the same structure. When antagonistic (attractive and repulsive) molecular forces are considered, nonlinear saturation of the instability becomes possible, while the boundary of this supercritical bifurcation is determined solely by the form of the intermolecular potential. The rupture time estimate obtained in closed form shows an excellent agreement with the results of the previously reported numerical simulations of the strongly nonlinear coupled evolution equations upon fitting the amplitude of the small initial perturbation. We further extend the weakly nonlinear analysis of the film dynamics and apply the Galerkin approximation to derive the amplitude equation(s) governing the dynamics of the fastest growing linear mode far from the instability threshold. The comparison of the rupture time derived from this theory with the results of numerical simulations of the original nonlinear evolution equations shows a very good agreement without any adjustable parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear rupture of thin liquid films on solid surfaces.

In this letter we investigate the rupture instability of thin liquid films by means of a bifurcation analysis in the vicinity of the short-scale instability threshold. The rupture time estimate obtained in closed form as a function of the relevant dimensionless groups is in striking agreement with the results of the numerical simulations of the original nonlinear evolution equations. This sugge...

متن کامل

Rupture of thin films with resonant substrate patterning.

We study the stability and rupture of thin liquid films on patterned substrates. It is shown that striped patterning on a length scale comparable to that of the spinodal instability leads to a resonance effect and an imperfect bifurcation of equilibrium film shapes. Weakly nonlinear analysis gives predictions for film shapes, stability, growth rates, and rupture times, which are confirmed by nu...

متن کامل

Alternative pathways of dewetting for a thin liquid two-layer film.

We consider two stacked ultrathin layers of different liquids on a solid substrate. Using long-wave theory, we derive coupled evolution equations for the free liquid-liquid and liquid-gas interfaces. Depending on the long-range van der Waals forces and the ratio of the layer thicknesses, the system follows different pathways of dewetting. The instability may be driven by varicose or zigzag mode...

متن کامل

Instabilities of Thin Viscous Liquid Film Flowing down a Uniformly Heated Inclined Plane

Instabilities of a thin viscous film flowing down a uniformly heated plane are investigated in this study. The heating generates a surface tension gradient that induces thermocapillary stresses on the free surface. Thus, the film is not only influenced by gravity and mean surface tension but also the thermocapillary force is acting on the free surface. Moreover, the heat transfer at the free su...

متن کامل

Long-scale evolution of thin liquid films

Macroscopic thin liquid films are entities that are important in biophysics, physics, and engineering, as well as in natural settings. They can be composed of common liquids such as water or oil, rheologically complex materials such as polymers solutions or melts, or complex mixtures of phases or components. When the films are subjected to the action of various mechanical, thermal, or structura...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 83 3 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2011